Bioinspired 3D Printable, Self-Healable, and Stretchable Hydrogels with Multiple Conductivities for Skin-like Wearable Strain Sensors

Abstract

Bioinspired hydrogels have promising prospects in applications such as wearable devices, human health monitoring equipment, and soft robots due to their multifunctional sensing properties resembling natural skin. However, the preparation of intelligent hydrogels that provide feedback on multiple electronic signals simultaneously, such as human skin receptors, when stimulated by external contact pressure remains a substantial challenge. In this study, we designed a bioinspired hydrogel with multiple conductive capabilities by incorporating carbon nanotubes into a chelate of calcium ions with polyacrylic acid and sodium alginate. The bioinspired hydrogel consolidates self-healing ability, stretchability, 3D printability, and multiple conductivities. It can be fabricated as an integrated strain sensor with simultaneous piezoresistive and piezocapacitive performances, exhibiting sensitive (gauge factor of 6.29 in resistance mode and 1.25 kPa–1 in capacitance mode) responses to subtle pressure changes in the human body, such as finger flexion, knee flexion, and respiration. Furthermore, the bioinspired strain sensor sensitively and discriminatively recognizes the signatures written on it. Hence, we expect our ideas to provide inspiration for studies exploring the use of advanced hydrogels in multifunctional skin-like smart wearable devices.

Publication
ACS Applied Materials & Interfaces
Zhaoyong Zou
Zhaoyong Zou
Professor

My research interests include bioprocess inspired fabrication, crystallization and ceramics.

Zhengyi Fu
Zhengyi Fu
Academician of the Chinese Academy of Engineering

Academician of the Chinese Academy of Engineering, Professor at Wuhan University of Technology.