In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution

Abstract

Benefiting from excellent metallic conductivity, full-spectrum solar energy absorption and rich active sites on the surface, atomically thin two-dimensional transition metal carbide (2D MXene) shows great promise in improving solar-to-hydrogen efficiency and has drawn intense interest in the field of photocatalysis. However, controllable construction of ultrathin 2D MXene-based heterojunction photocatalysts still remains a significant challenge. Herein, one-dimensional (1D) CdS nanorod/2D MXene nanosheet heterojunctions with well-defined nanostructures and strong interfacial coupling are fabricated by in situ assembling solvothermally-generated CdS nanorods on ultrathin Ti3C2 MXene nanosheets. Due to their specific interface characteristics, 1D/2D Schottky heterojunction is capable of providing accelerated charge separation and a lower Schottky barrier for solar-driven hydrogen evolution from water splitting. As expected, the Schottky-based photocatalyst is 7-fold more active in the illuminated hydrogen evolution reaction (HER) than pristine CdS nanorods, implying the synergistic effects between n-type semiconductor CdS and highly conductive 2D Ti3C2 MXene nanosheets.

Publication
Applied Catalysis B: Environmental
Zhaoyong Zou
Zhaoyong Zou
Professor

My research interests include bioprocess inspired fabrication, crystallization and ceramics.